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1 Introduction

Recently, it was found that N = 4 SYM gluon scattering amplitudes display a non-trivial

symmetry called the dual conformal invariance [1–3], originating from self-dual symmetry

of the AdS5 under T-duality. This dual conformal symmetry can be extended to the full

dual superconformal symmetry [4, 6], considering full set of supergluon amplitudes. In this

case, the existence of fermionic T-duality transformation play a key role. The AdS5 × S5

Green-Schwarz superstring theory is self-dual under a combination of bosonic and fermionic

T-duality. This fact explains the superconformal and the dual superconformal invariance

in N = 4 SYM.

It turns out that the T-duality is closely related to the integrability of the sigma

models [5, 6]. For AdSn background, the sigma models are self-dual under bosonic T-

duality, suggesting the local Noether charges of dual model are related to the non-local

charges of the original model and vice versa. This relation could be generalized to the

integrable super-coset models which are self-dual under the combination of bosonic and

fermionic T-duality transformations. In fact, both bosonic and fermionic T-duality could

be understood as the discrete automorphism of the global symmetry algebra.

It is interesting to investigate if and under what conditions other integrable sigma

models could be self-dual under fermionic T-duality. In [7], the authors considered more

general integrable Green-Schwarz sigma models on AdS backgrounds. They showed that

the sigma models on AdSp × Sp(p = 2, 3) background which are supercosets of PSU su-

pergroups are self-dual under fermionic T-duality, while the non-critical AdS2 and AdS4

models and the critical AdS4 ×CP 3 which all are supercosets of OSp supergroups are not.
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They also argued that in general the models which are supercosets of ortho-symplectic

groups are not self-dual under fermionc T-duality, hence are short of the dual supercon-

formal symmetry even its dual models exist. It was argued that the absence of fermionic

self-duality in OSp modes is due to the lack of appropriate fermionic quadratic terms, be-

cause the Cartan-Killing bilinear form of OSp group is only nonvanishing for the products

of different fermionic generators.

In this paper, we explore this problem further by analyzing other integrable Green-

Schwarz sigma models on AdS backgrounds. We consider integrable supercosets with Z4

grading. The existence of Z4 grading of supercosets allows us to construct one-parameter

families of flat currents [8, 9], which in turn allow for the construction of infinitely many

non-local charges [12]. We first show that the sigma model with AdS5 × S1 background,

which is the supercoset of SU(2, 2|2) supergroup, is self-dual under fermionic T-duality. We

then present a series of new integrable Green-Schwarz sigma models with the backgrounds

AdS2 ×CPn. Considering the critical dimension of superstring, we only focus on the cases

with n ≤ 4. These backgrounds could be taken as supercosets of SU supergroups for

arbitrary n. However, for n = 1, 3 the backgrounds could also be realized as supercosets of

OSp supergroups. We show explicitly that all of the SU cases are self-dual under fermionic

T-duality, while the OSp cases are not. Our study on AdS2 × CPn with n = 1, 3 shows

that even the bosonic background is the same, the different supersymmetrizations may

have different behavior under fermionic T-duality.

Moreover, we find that in the n = 1 Osp supergroup case, corresponding to AdS2×CP 1

background, even though the sigma model has regular fermionic quadratic term, it fails to

be self-dual under fermionic T-duality. The failure is due to the shortage of κ-symmetry

to gauge away the right number of fermionic degrees of freedom. This happens for other

backgrounds, including AdS2×S2n and AdS4×S2n. Therefore, in general, the sigma models

on supercosets of OSp supergroup can not be self-dual under fermionic T-duality, but due

to different reasons. For OSp supergroups with superalgebra of types C(n) and D(m,n),

the failure stems from the singular fermionic quadratic terms, while for OSp supergroups

with superalgebra of type B(m,n), the failure comes from the shortage of κ-symmetry.

This paper is organized as follows. In section 2 we show that the AdS5×S1 background

is self-dual under a combination of bosonic and fermionic T-duality. In section 3, we study

the AdS2 × CPn cases. We first discuss the SU cases. After presenting their superalgebra

and Z4 automorphism which are crucial for the integrability, we preform the T-duality via

Buscher’s procedure, and show that the supercoset models are self-dual under T-duality.

Then we turn to the OSp cases, and show that they are not self-dual, due to different

reasons. In section 4, we conclude and present a brief discussion. We collect some technical

details into the appendices. In appendix A, we give the definition of the generators of the

superalgebra SU(1, 1|n). And in appendix B, we discuss the κ-symmetry in AdS2n ×
S2m backgrounds.

2 AdS5 × S1 background

In this section we consider the Green-Schwarz sigma-model on AdS5 × S1 using the su-

percoset manifold SU(2, 2|2)/(SO(4, 1) × SO(3)). It was first pointed out by Polyakov [10]
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that noncritical AdSp × Sq are conformal invariant and should be dual to gauge theories

with less or no supersymmetries. And later on in [11], Klebanov and Maldacena found

the AdS5 × S1 solution in the low energy supergravity effective action of six dimensional

noncritical string theory with Ramond-Ramond flux and in the presence of space-time fill-

ing D5-branes. This solution has the right structure to be dual to N = 1 supersymmetric

gauge theories with flavors, in agreement with the proposal in [10]. It has been shown that

such background could be realized as integrable supercoset with Z4 structure [9].

For AdS5 × S1 background, the su(2, 2|2) algebra and its Z4 structure were studied

in [9]. Here we redefine the generator as

D = M45, Pa = Ma5 − Ma4, Ka = Ma5 + Ma4,

Qαα′

=
1

2
εαβCα′β′

(Q1
ββ′ − iQ2

ββ′), Q̄α̇
α′ = −1

2
(Q1α̇

α′ + iQ2α̇
α′ ),

Sαα′ = −1

2
(Q1

αα′ + iQ2
αα′), S̄α′

α̇ =
1

2
εα̇β̇Cα′β′

(Q1β̇
β′ − iQ2β̇

β′ ), (2.1)

then we have the non-trivial brackets of the algebra

[D,Pa] = Pa, [D,Ka] = −Ka,

[Pa,Kb] = 2ηabD + 2Mab,

[Pa,Mbc] = ηabPc − ηacPb, [Ka,Mbc] = ηabKc − ηacKb,

[Mab,Mcd] = ηadMbc + ηbcMad − ηacMbd − ηbdMac,

[D,Qαα′

] =
1

2
Qαα′

, [D,Sαα′ = −1

2
Sαα′ ,

[Ta′ , Tb′ ] = εa′b′c′Tc′ ,

[Pa, Sαα′ ] = −iQ̄α̇
α′(σ̄a)α̇α, [Ka, Q

αα′

] = −iS̄α̇α′

(σ̄a)α̇α,

[Mab, Q
αα′

] =
1

2
Qβα′

(σab̄)
α
β , [Mab, Sαα′ ] =

1

2
Sβα′(σāb)

α
β ,

[Ta′ , Qαα′

] =
1

2
Qαβ′

(τa′)β
′

α′ , [Ta′ , Sαα′

] =
1

2
Sαβ′

(τa′)β
′

α′ ,

[Qαα′

, R] =
i

2
Qαα′

, [Sαα′ , R] = − i

2
Sαα′ ,

{Qαα′

, Q̄α̇
β′} = (σa)αα̇δα′

β′ Pa, {Sαα′ , S̄β′

α̇ } = (σa)αα̇δβ′

α′Ka,

{Qαα′

, Sββ′} = δα
β δα′

β′

[

i

(

D +
1

2
γabMab

)

− R

]

− 2iδα
β (τa′

)α
′

β′Ta′ . (2.2)

Here a, b = 0, 1, 2, 3 are the so(1, 3) indices, α, β = 1, 2 and α̇, β̇ = 1, 2 are the so(1, 3)

spinor indices, which are lowered and raised using ǫ12 = −ǫ21 = 1, ǫ12 = −ǫ21 = −1,

ǫ1̇2̇ = −ǫ2̇1̇ = 1,ǫ1̇2̇ = −ǫ2̇1̇ = −1 . The matrices (ηab) = (ηab) = diag(− + ++), and

the Dirac matrices are formed by σa = (1, σi), σ̄a = (1,−σi), σab̄ = 1
2 [σa, σ̄b]. And

a′, b′ = 1, 2, 3 are the so(3) indices, α′, β′ = 1, 2 are the so(3) spinor indices, which are

lowered and raised using Cα′β′ = ηα′β′ . The matrices (ηa′b′) = diag(+ + +), and the Dirac

matrices are τa′ = −iσa′ . Ta′ and R are the generators of su(2) and u(1) respectively.
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The Z4-automorphism invariant subspaces are classified as

H0 = {Pa − Ka, Jab, Ta′},
H1 = {εαβCα′β′Qββ′ − Sαα′ , εα̇β̇Cα′β′S̄β′

β̇
− Q̄α̇

α′},
H2 = {Pa + Ka,D,R},
H3 = {εαβCα′β′Qββ′

+ Sαα′ , εα̇β̇Cα′β′S̄β′

β̇
+ Q̄α̇

α′ , } (2.3)

where Hi denotes the subspace of grading i.

The non-vanishing components of the Cartan-Killing bilinear forms are

Str(PaKb) = −2ηab, Str(DD) = 1, Str(JabJcd) = ηacηbd − ηadηbc,

Str(RR) = 4, Str(Ta′Tb′) = −1

2
δa′b′ , Str(Qαα′

Sββ′) = 2iδα
β δα′

β′ . (2.4)

A general group element g ∈ SU(2, 2|2) can be parameterized as

g = exp(xaPa + x′aKa + θαα′Qαα′

+ ξαα′

Sαα′)exp(θ̄α′

α̇ Q̄α̇
α′ + ξ̄α̇

α′ S̄α′

α̇ )yDexp(R). (2.5)

Now we use the κ-symmetry to fix ξαα′

= 0, and use the gauge symmetry to set x′a = 0,

then we read the coset representative

g = exp(xaPa + θαα′Qαα′

)exp(θ̄α′

α̇ Q̄α̇
α′ + ξ̄α̇

α′ S̄α′

α̇ )yDexp(R),

≡ exp(xaPa + θαα′Qαα′

)eB . (2.6)

The Green-Schwarz sigma-model on the supercosets of supergroup G with Z4 auto-

morphism is generically described by the action

S =
R2

4πα′

∫

d2zStr

(

J2J̄2 +
1

2
J1J̄3 −

1

2
J3J̄1

)

, (2.7)

where R is the AdS radius, J = g−1∂g for g ∈ G and Ji is the current J restricted to the

invariant subspace Hi of the Z4 automorphism of the algebra of the group G. In the case

at hand, using the above algebra, the sigma-model (2.7) takes the form

S =
R2

4πα′

∫

d2z

[

− (JPa + JKa)(J̄Pb
+ J̄Kb

)ηab + JDJ̄D + 4JRJ̄R (2.8)

+iεαβCα′β′

(JQαα′
J̄Qββ′

−JSαα′
J̄Sbetaβ′

)+iεα̇β̇Cα′β′

(JQ̄α̇
α′

J̄
Q̄β̇

β′

−JS̄α̇
α′

J̄
S̄β̇

β′

)

]

,

where the currents take the form

JPa = [e−B(dxaPa + dθαα′Qαα′

)eB ]Pa , JQαα′ = [e−B(dxaPa + dθαα′Qαα′

)eB ]Qαα′ ,

JK = 0 , JQ̄α̇
α′

= [e−BdeB ]Q̄α̇
α′

,

JSαα′
= 0 , JS̄α′

α̇
= [e−BdeB ]S̄α′

α̇
,

JD = [e−BdeB ]D , JR = [e−BdeB ]R . (2.9)
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We can now T-dualize the action with respect to xa and θαα′ via Buscher’s proce-

dure [13]. By introducing the bosonic gauge fields (Aa, Āa) for the translation Pa, the

fermionic gauge fields (Aαα′ , Āαα′) for the supercharges Qαα′

, and the Lagrange multipli-

ers x̃a and θ̃αα′

, adding the Lagrange multiplier term

R2

4πα′

∫

d2z[x̃a(∂̄Aa − ∂Āa) + θ̃αα′

(∂̄Aαα′ − ∂Āαα′)] (2.10)

to the action (2.8), we have the full action

S =
R2

4πα′

∫

d2z[−ηabA
′aĀ′b + iεαβCα′β′

A′
αα′Ā′

ββ′ + . . .

+x̃a(∂̄Aa − ∂Āa) + θ̃αα′

(∂̄Aαα′ − ∂Āαα′)] (2.11)

where . . . denotes the spectator terms and

A′a = [e−B(AbPb + Aαα′Qαα′

)eB ]Pa , A′
αα′ = [e−B(AaPa + Aββ′Qββ′

)Be ]Qαα′ . (2.12)

After plugging the inverse relations Aa = [eB(A′bPb + A′
αα′Qαα′

)e−B ]Pa and Aαα′ =

[eB(A′aPa + A′
ββ′Qββ′

)e−B ]Qαα′ into the action, we can integrate out A′a and A′
αα′ by

using their equations of motion

A′a = ηab([eB∂x̃bPbe
−B ]Pb

+ ∂[eB θ̃αα′

Pbe
−B ]Qαα′ )

= ηab[e−B(∂x̃cKc + i∂θ̃αα′

Sαα′)eB ]Kb
,

Ā′a = −ηab([eB ∂̄x̃bPbe
−B ]Pb

+ [eB ∂̄θ̃αα′

Pbe
−B ]Qαα′ )

= −ηab[e−B(∂̄x̃cKc + i∂̄θ̃αα′

Sαα′)eB ]Kα ,

A′
αα′ = −iεαβCα′β′([eB∂x̃aQββ′e−B ]Pa − [eB∂θ̃γγ′

Qββ′e−B ]Qγγ′
)

= εαβCα′β′ [e−B(∂x̃aKa + i∂θ̃γγ′

Sγγ′)eB ]Sββ′
,

Ā′
αα′ = iεαβCα′β′([eB ∂̄x̃aQββ′e−B ]Pa − [eB ∂̄θ̃γγ′

QBβ′e−B ]Qγγ′
)

= −εαβCα′β′ [e−B(∂̄x̃aKa + i∂̄θ̃γγ′

Sγγ′)eB ]Sββ′
. (2.13)

Finally we obtain the T-dualized action

S =
R2

4πα′

∫

d2z

[

− [e−B(∂x̃cKc + i∂θ̃αα′

Sαα′)eB ]Ka[e
−B(∂x̃cKc + i∂θ̃αα′

Sαα′)eB ]Kb
ηab

−iεαβCα′β′

[e−B(∂̄x̃aKa + i∂̄θ̃γγ′

Sγγ′)eB ]Sαα′
[e−B(∂̄x̃aKa + i∂̄θ̃γγ′

Sγγ′)eB ]Sββ′

+ . . .

]

(2.14)

Note that the su(2, 2|2) algebra admits the automorphism

Pa ↔ Ka , D → −D , Qαα′ ↔ Sαα′ , Q̄α̇
α′ ↔ S̄α′

α̇ , (2.15)

with the rest of the generators unchanged. Applying this automorphism combined with

the change of variables

x → x̃ , θαα′ → iθ̃αα′

, θ̄α′

α̇ ↔ ξ̄α̇
α′ , y → y , (2.16)

to (2.8), we recover (2.14). This completes our proof that the background AdS5 × S1 is

self-dual under fermionic T-duality.

– 5 –



J
H
E
P
1
2
(
2
0
0
9
)
0
5
1

3 AdS2 × CP n background

In this section, we turn to the sigma models on the AdS2 ×CPn backgrounds. We restrict

ourselves to the critical and noncritical superstrings with n 6= 4. For n = 1, since CP 1 is

just two-dimensional sphere S2, we have AdS2 × S2, which has been studied in [7]. The

superstring propagating in the AdS2 × CPn background has the bosonic part

AdS2 × CPn ∼= SO(1, 2)/U(1) × SU(n + 1)/U(n). (3.1)

The supergroups which have bosonic subgroups SO(1, 2) × SU(n + 1) can be SU(1, 1|n + 1)

for n = 1, 2, 3, 4, and OSp(3|2) for n = 1 and OSp(6|2) for n = 3. This means that for

n = 1, 3, we may have two different supercosets realizations, based on SU supergroups or

on OSp supergroups, with different supercharges respectively.

3.1 PSU supergroup case

In this subsection, we will focus on the SU(1, 1|n + 1) case, with a sigma-model on the

coset space

SU(1, 1|n + 1)

U(1) × U(n) × U(1)
(3.2)

The last U(1) is the overall generator. The super-Lie algebras su(1, 1|n) are the algebras

of (2+n)× (2+n) matrices with bosonic diagonal blocks and fermionic off-diagonal blocks

M =

(

A X

Y B

)

with trA = trB = 0, (3.3)

where A and B are even(bosonic) 2× 2 and n×n matrices. The 2×n matrix X and n× 2

matrix Y are odd. The anti-hermiticity condition is

M † ≡
(

σ3A
†σ3 −iσ3Y

†

−iX†σ3 B†

)

= −M, (3.4)

which leads to

A = −σ3A
†σ−1

3 , B = −B† , X = iσ3Y
†. (3.5)

The algebra su(1, 1|n) has a Z4 automorphism, generated by the conjugation map M →
Ω(M) ≡ ΩMΩ−1 with the matrix

Ω =







σ3 0 0

0 iIn−1 0

0 0 −i






. (3.6)

This conjugation respects the anti-hermiticity conditions given above and manifestly gives

an algebra automorphism, Ω4(M) = M . In addition, the invariant subalgebra Ω(M) = M

is the desired bosonic u(1) ⊕ u(n − 1) ⊕ u(1) algebra.

– 6 –



J
H
E
P
1
2
(
2
0
0
9
)
0
5
1

Using this automorphism the algebra can be decomposed into Z4-invariant subspaces

Hk (k = 0 . . . , 3) such that

Hk = {X ∈ su(1, 1|n)|ΩXΩ−1 = ikX} . (3.7)

The su(1, 1|n) algebra is generated by the following (anti)commutators:

[D,P ] = P, [D,K] = −K,

[P,K] = −2D, [Rj
i , R

l
k] = δj

kR
l
i − δl

iR
j
k,

[D,Qi] =
1

2
Qi, [D,Si] = −1

2
Si,

[P,Qi] = 0, [P, Si] = iQ̄i,

[K,Qi] = iS̄i, [K,Si] = 0,

[Rj
i , Q

k] = −(δk
i Qj − 1

n
δj
i Q

k), [Rj
i , Sk] =

(

δj
kSi −

1

n
δj
i Sk

)

,

{Qi, Q̄j} = δi
jP, {Si, S̄

j} = −δj
jK,

{Qi, Sj} = −i(δi
j(A + D) + Ri

j),

[Qi, A] = −n − 2

n
Qi, [Si, A] =

n − 2

n
Si, (3.8)

where i, j = 1, 2, . . . , n are SU(n) R-symmetry indices, and A is the overall U(1) generator

A =





















1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 2
n 0 . . . 0

0 0 0 2
n . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . 2
n





















. (3.9)

The definition of other generators could be found in appendix A. Notice we neglect the

AdS2 spinor index α = 1 of the fermionic generators (eg. Qαi).

The Z4-graded subspaces of the algebra are

H0 = {P + K,Rb
a, A},

H1 = {Qa − S̄a, Qd + S̄d, Q̄a − Sa, Q̄d + Sd},
H2 = {P − K,D,Ra

n, Rn
a},

H3 = {Qa + S̄a, Qd − S̄d, Q̄a + Sa, Q̄d − Sd}, (3.10)

where a, b = 1, 2, · · · , n − 1. The non-vanishing components of the Cartan-Killing bilinear

form are

Str(PK) = −1, Str(DD) =
1

2
,

Str(Rj
iR

l
k) = −

(

δl
iδ

j
k − 1

n
δj
i δ

l
k

)

,

Str(QiSj) = − i

2
, Str(Q̄iS̄

j) =
i

2
. (3.11)
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In order to study the fermionic T-duality, it turns out to be convenient to redefine the

generators. Instead of using the above algebra directly, we redefine the Grassmann-odd

generators as linear combinations of the original ones

Qa =
Qa + Q̄n

2
, Q̂a =

Qa − Q̄n

2
,

Sa =
S̄a − Sn

2
, Ŝa =

S̄a + Sn

2
,

Qn =
ΣQ̄a − Qn

2
, Q̂n =

−Qn − ΣQ̄n

2
,

Sn =
−ΣSa − S̄n

2
, Ŝa =

ΣSa − S̄n

2
, (3.12)

where the sum is over 1, 2, . . . , n− 1. The Z4 invariant subspaces of the algebra change to

H0 = {P + K,Rb
a, A},

H1 = {Qa − Sa, Qn + Sn, Q̂a − Ŝa, Q̂n + Ŝn},
H2 = {P − K,D,Ra

n, Rn
a},

H3 = {Qa + Sa, Qn − Sn, Q̂a + Ŝa, Q̂n − Ŝn}, (3.13)

and the nonvanishing Cartan-Killing bilinear form of the fermionic generators change to

Str(QiSj) = iCij , Str(Q̂iŜj) = −iCij , (3.14)

where

Cij =

















0 0 . . . 0 1

0 0 . . . 0 1
...

...
. . .

...
...

0 0 . . . 0 1

−1 −1 . . . −1 0

















.

The sigma-model action (2.7) now takes the form

S =
R2

4πi′

∫

d2z

[

1

2
(JP − JK)(J̄P − J̄K) +

1

2
JDJ̄D +

1

2
JRn

a
J̄Ra

n
−

− i

2
ηij(JQi

J̄Qj
− JQ̂i

J̄Q̂j
+ JSi

J̄Sj
− JŜi

J̄Ŝj
)

]

, (3.15)

where ηan = ηna = 1 and zero otherwise. This is exactly the same as the one in [7] if we

take n = 2.

Next, after fixing the kappa symmetry and the gauge symmetry, we parameterize the

coset element as

g = exP+θiQ
i

eB , (3.16)

where

eB ≡ eθ̂iQ̂i+ξ̂iŜiyDeΣyi
jRj

i
/y. (3.17)
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The components of the Maurer-Cartan 1-form are

JP = [e−B(dxP + dθiQ
i)eB ]P , JQi = [e−B(dxP + dθiQ

i)eB ]Qi ,

JK = 0 , JQ̂i
= [e−BdeB ]Q̂i

,

JSi = 0 , JŜi
= [e−BdeB ]Ŝi

,

JD = [e−BdeB ]D , J
Rj

i
= [e−BdeB ]

Rj
i

. (3.18)

We would like to do T-dual transformation in the directions of the Abelian sub-algebra

formed by the generators P and Qi. Similar to the case in section 2, we introduce the

bosonic gauge fields (A, Ā) for the translation P and the fermionic gauge fields (Ai, Āi) for

the supercharges Qi, and add the Lagrange multiplier term

R2

4πα′

∫

d2z[x̃(∂̄A − ∂Ā) + θ̃i(∂̄Ai − ∂Āi)] (3.19)

with x̃ and θ̃i being multiplier, to the action (3.15). Then the full action takes the form

S =
R2

4πα′

∫

d2z

[

1

2
A′Ā′ − i

2
ηijA′

iĀ
′
j + . . .

+x̃(∂̄A − ∂Ā) + θ̃i(∂̄Ai − ∂Āi)

]

, (3.20)

where

A′ = [e−B(AP + A′
iQ

i)eB ]P , A′
i = [e−B(AP + A′

iQ
i)eB ]Qi . (3.21)

With the inverse A = [eB(dxP + dθiQ
i)e−B ]P and Ai = [eB(dP + dθiQ

i)e−B ]Qi , we find

the equations of motion

A′ = −2[eB∂x̃Pe−B ]P − 2[eB∂θ̃iPe−B]Qi = −2[e−B(∂x̃K + i∂θ̃iSi)e
B ]K ,

Ā′ = 2[eB ∂̄x̃P e−B]P + 2[eB ∂̄θ̃iPe−B ]Qi = 2[e−B(∂̄x̃K + i∂̄θ̃iSi)e
B ]K ,

A′
i = 2iηij([e

B∂x̃Qje−B ]P − [eB∂θ̃kQje−B ]Qk) = −2ηij[e
−B(∂x̃K + i∂θ̃kSk)e

B ]Sj
,

Ā′
i = 2iηij([e

B ∂̄x̃Qje−B ]P − [eB ∂̄θ̃kQje−B ]Qk) = −2ηij[e
−B(∂̄x̃K + i∂̄θ̃kSk)e

B ]Sj
.

Integrating out A′ and A′i, and rescaling x̃ → 1
2 x̃ and θ̃i → 1

2 θ̃i, we have the T-

dualized action

ST =
R2

4πα′

∫

d2z

[

1

2
[e−B(∂x̃K + i∂θ̃iSi)e

B ]K [e−B(∂̄x̃K + i∂̄θ̃iSi)e
B ]K (3.22)

− i

2
ηij [e

−B(∂x̃K + i∂θ̃kSk)e
B ]Si

[e−B(∂̄x̃K + i∂̄θ̃kSk)e
B ]Sj

+ . . .

]

,

Using the automorphism of the algebra

P ↔ K , D → −D , Qi ↔ Si , Q̂i ↔ Ŝi , (3.23)

and changing the variables

x → x̃ , θi → iθ̃i , θ̂i ↔ ξ̂i , yj
i → yj

i

y2
, (3.24)

we find that the action (3.15) is the same as (3.22). This shows that the supercosets of

SU(1, 1|n) group is self-dual under fermionic T-duality.
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3.2 The OSp case

In the above subsection we discussed the AdS2 × CPn supercoset models based on PSU

supergroups. In this section, we will discuss another realization of AdS2 × CPn based on

ortho-symplectic supergroups. As we have said before, there are only two cases, OSp(3|2)
for n = 1 and OSp(6|2) for n = 3.

3.2.1 The OSp(3|2) case

For n=1 case, there is another supercoset realization of AdS2×CP 1 ∼= SO(1, 2)/SO(1, 1)×
SO(3)/SO(2). The supergroup OSp(3|2) corresponds to the superalgebra B(1, 1), with its

bosonic subgroup being SO(3) × Sp(2). It has six real fermionic generators transforming

as the (3, 2) representation of SO(3)×Sp(2). This is different from its PSU realization. In

these two different realizations, supercharges are totally different.

The algebra of osp(3|2) is

[D,P ] = P, [D,K] = −K, [P,K] = −2D,

[D,Qi] =
1

2
Qi, [D,Si] =

1

2
Si [P, Si] = iQi, [K,Qi] = iSi,

[Ji, Jj ] = iεijkJk, [Ji, Qj ] = iεijkQk, [Ji, Sj] = iεijkSk,

{Qi, Qj} = δijP, {Si, Sj} = −δijK, {Qi, Sj} = −iδijD− 1

2
εijkJk, (3.25)

where i = 1, 2, 3 are the SO(3) indices, and the Z4-automorphism invariant subspaces are

H0 = {P − K,J2},
H1 = {Qi + Si},
H2 = {P + K,D, J1, J3},
H3 = {Qi − Si}. (3.26)

The non-vanishing components of the Cartan-Killing bilinear form are

Str(PK) = 1, Str(DD) = −1

2
,

Str(JiJj) = 2δij , Str(QiSj) = iδij . (3.27)

The action take the form

S =
R2

4πα′

∫

d2z

[

1

2
(JP + JK)(J̄P + J̄K) − 1

2
JDJ̄D + 2JJ3

J̄J3

+2JJ1
J̄J1

− i

2
(JQi

J̄Qi
− JSi

J̄Si
)

]

. (3.28)

Before performing the T-duality, we would like to discuss a little bit about the κ-

symmetry. Conventionally, it is expected that the κ-symmetry can remove half of the

fermionic degrees of freedom. This is indeed true for supercosets of SU supergroups. How-

ever, for supercoset models of OSp supergroup, this is not the case any more. For example,
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superstring on AdS4 × CP 3 [15, 16] has only eight κ-symmetry degrees of freedom, rather

than the ”expected” number:twelve. Following the procedure in [15], we find that our sigma

model has only two κ-symmetry degrees of freedom. The detail is given in appendix B.

After gauge fixing two fermionic parameters S1 and S2, we have the coset element

g = exp+θ1Q1+θ2Q2eθ3Q3+ξ3S3yDe
Jiyi

y . (3.29)

Then with the (anti-)communication relation, the components of the Maurer-Cartan 1-

form are

JP = [e−BdxPeB ]P , JD = [e−BdeB ]D, JQi
= [e−BdθiQie

B ]Qi
,

JS3
= [e−BdeB ]S3

, JQ3
= [e−BdeB ]Q3

+ [e−BdxPeB ]Q3
,

JJ3
= [e−BdeB ]J3

JJ1
= [e−BdeB ]J1

+ [e−Bdθ2Q2e
B ]J1

, (3.30)

where i = 1, 2. Using the fact

[e−BdxPeB ]P =
1

y
dx, [e−BdθiQie

B ]Qi
=

1

y1/2
,

[e−BdxPeB ]Q3
= iξ3dx, [e−Bdθ2Q2e

B ]J1
=

1

2
dθ2ξ3,

and [e−BdeB ]Q3
= jQ3

, [e−BdeB ]J1
= jJ1

, we can rewrite the action as

S =
R2

4πα′

∫

d2z

[

1

2

(

∂x∂̄x

y2
+ J̄Q3

ξ3∂x + JQ3
ξ3∂̄x

)

− i

2

(

∂θi∂̄θi

y
− 2iJ̄J1

∂θ2ξ3 − 2iJJ1
∂̄θ2ξ3

)

+ . . .

]

(3.31)

Here we can see that the bosonic part and the fermionic part are separated, and after

the T-duality, we will have terms J̄Q3
ξ3∂x̂ − JQ3

ξ3∂̄x̂, and J̄J1
∂θ̂2ξ3 − JJ1

∂̄θ̂2ξ3. These

terms can not be obtained from any automorphism of the algebra, so the sigma model is

not self-dual.

Let us make a few remarks. Firstly, this sigma model can not be cataloged to the OSp

case discussed in [7]. In that paper, the sigma models of OSp supergroups discussed belong

to superalgebra C(n) and D(m,n), with fermionic generators {Q, Q̄, S, S̄}. In this case,

the action includes

ηIJ(JQI J̄Q̄J − JQ̄I J̄QJ ),

which leads to singular fermionic quadratic terms and can not be T-dualized. In our case,

we only have fermionic generators {Q,S} (there are only six fermionic generators), and the

quadratic terms

JQI J̄QI − JSI J̄SI

in the action. Obviously, the actions with these forms can be T-dualized. This discussion

can easily be generalized to the AdS2 × S2n and AdS4 × S2n backgrounds, with the su-

percosets OSp(2n + 1|2)/(SO(2n) × U(1)) and OSp(2n + 1|4)/(SO(2n) × SO(3, 1)). The

– 11 –



J
H
E
P
1
2
(
2
0
0
9
)
0
5
1

algebras of these supergroups belong to B(n, 1) and B(n, 2) types, which also have the

fermionic generators {Q,S} and the similar regular fermionic quadratic terms.

Secondly, this action will only have regular quadratic term and be self-dual if we can

gauge away half of the fermions, i.e. three superconformal charges S’s. But the terms

linear in J appear as there are only two κ-symmetry degrees of freedom. Such kind of

term forbids the model from being self-dual. The existence of such term does not depend

on the gauge choice. To see this, instead of choosing S1 and S2, let us gauge away Q3

and S3. However, even with this more symmetric gauge choice, we still get terms like

J̄Dξi∂θi + JDξi∂̄θi, which keeps the model from being self-dual. The similar arguments

also apply to AdS2 × S2n and AdS4 × S2n backgrounds in which cases κ-symmetry can

only gauged away two and four fermionic degrees of freedom respectively.

Finally, there is another subtlety regarding the number of κ-symmetries in OSp super-

coset models. It was observed in [15] that for the sigma model on AdS4 × CP 3 when the

string moves entirely in AdS4, the κ-symmetry parameter ǫ vanishes so that the number

of κ-symmetries increases from eight to twelve, which allows us to gauge away half of the

fermions. However, this does not mean that the model is self-dual in this case since the

model cannot describe the complete superstring in AdS4 × CP 3 background. Actually, it

was pointed out in [17, 18] that when the superstring moves entirely in AdS4 the classical

integrability of the model is still an open issue since the model could not be taken simply

as a supercoset anymore. For example, the string can move in a subspace which includes

AdS4 but is a twisted superspace rather than a supercoset. In this case, the usual analysis

of integrability of supercoset model could not be applied and it is not clear if the model is

still integrable or not [17]. Nevertheless, if just focused on the bosonic model, the string

in AdS4 is always integrable, as is well-known. The same issue may happen in the OSp

supercoset models studied in this paper.1

3.2.2 The OSp(6|2) case

For the n=3 case, the supercoset can be AdS2 × CP 3 ∼= SO(1, 2)/SO(1, 1) × SO(6)/U(3).

The supergroup OSp(6|2) corresponds to the superalgebra D(3, 1), with bosonic subgroup

SO(6) × Sp(2), and it has twelve real fermionic generators transforming as in the (6, 2)

representation of SO(6) × Sp(2). It is easy to see that the algebra is similar to the one of

OSp(6|4) [7], which corresponds to superalgebra D(3, 2). We can change the Sp(4) gener-

ators [7] with Sp(2) generators and neglect the SO(3, 1) spinors indices to get the algebra

[λkl̇, λmṅ] = 2i(δml̇λkṅ − δkṅλml̇), [λkl̇, Rmn] = 2i(δml̇Rkn − δnl̇Rkm),

[Rmn, Rkl] = 0, [Rmn, Rk̇l̇] =
i

2
(δmk̇λnl̇−δml̇λnk̇−δnk̇λml̇+δnl̇λmk̇),

[D,P ] = P, [D,K] = −K,

[P,K] = −2D,

[D,Ql] =
1

2
Ql, [D,Sl] = −1

2
Sl,

[P,Ql] = 0, [K,Sl] = 0,

1
We would like to thank D. Sorokin for clarifications on this issue.
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[P, Sl] = −iQl, [K,Ql] = iSl,

[Rkl, Q
ṗ] = i(δṗlQk − δṗkQl), [Rkl, S

ṗ] = −i(δṗlSk − δṗkSl),

[Rk̇l̇, Q
p] = −i(δpl̇Qk̇ − δpk̇Ql̇), [Rk̇l̇, S

p] = i(δpl̇Sk̇ − δpk̇S l̇),

[λkl̇, Q
p] = 2iδpl̇Qk, [λkl̇, S

p] = 2iδpl̇Sk,

[λkl̇, Q
ṗ] = −2iδṗkQl̇, [λkl̇, S

ṗ] = −2iδṗkS l̇,

{Ql, Qk} = 0, {Ql, Qk̇} = −δlk̇P,

{Sl, Sk} = 0, {Sl, Sk̇} = −δlk̇K,

{Ql, Sk} = −Rlk, {Ql̇, Sk̇} = −Rl̇k̇,

{Ql, Sk̇} = −iδlk̇D +
1

2
λlk̇ {Ql̇, Sk} = iδl̇kD +

1

2
λkl̇, (3.32)

where k, l = 1, 2, 3 and the dotted ones are the 3 and 3̄ of u(3) respectively. Note that λkl̇’s

are the generators of so(6).

The algebra admits the Z4 automorphism and the invariant subspaces are

H0 = {P − K,λlk̇},
H1 = {Ql − Sl, Ql̇ − S l̇},
H2 = {P + K,D,Rkl, Rk̇l̇},
H3 = {Ql + Sl, Ql̇ + SL̇}. (3.33)

Similar to the OSp(6|4) case, it does not have a fermionic T-duality symmetry because

the matrix multiplying the gauge field is singular.

4 Conclusion and discussion

We have shown that the sigma models on AdS5×S1 and AdS2×CPn background realized

as supercosets of PSU supergroups are self-dual under the combination of bosonic and

fermionic T-duality, while the AdS2×CPn background as the supercosets of OSp (n = 1, 3)

supergroups are not. For n = 3, the OSp sigma model is quite similar to the one on

AdS4 × CP 3, in which case there is no appropriate fermionic quadratic term to do T-

dualization. However, for n = 1 the OSp(3|2) model in our case is very different from the

OSp case discussed in [7]. This OSp(3|2) model has appropriate fermionic quadratic term,

which allows us to perform fermionic T-duality. Nevertheless, the model is not self-dual

under T-duality, as there are not enough κ-symmetry degrees of freedom.

The difference between these OSp cases stems from the fact that they belong to dif-

ferent superalgebras. The cases in [7] belong to superalgebras C(n) and D(m,n), the

OSp(3|2) case belongs to B(1, 1). For the former case, there is no appropriate fermionic

quadratic terms, while for the latter case, the fermionic quadratic terms are not singular

but now the κ-symmetry degrees of freedom are not enough to gauge away the right num-

ber of fermions to allow the model to be self-dual. This discussion can be generalized to

AdS2×S2n and AdS4×S2n backgrounds, both of which could be realized as the supercosets

of OSp supergroups with B(m,n) type superalgebra.
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Another lesson from our study is that for some coset models, they may have differ-

ent supersymmetrized coset realizations, which have different behaviors under fermionic

T-duality. A typical example is AdS2 ×S2. This indicates that in the study of these back-

grounds, we need not only care about the bosonic backgrounds , but also need to consider

the background RR-flux and the corresponding supersymmetries.

When the superstring moves only in a subspace of the supercoset, the number of κ-

symmetries may be enhanced. In other words, the number of physical fermionic degrees of

freedom depends on the motion of the string. In this case, it would be interesting to study

the classical integrability and the self-dual properties of the model.
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A The definition of the su(1, 1|n) generators

The generators of the algebra can be taken as

D =
1

2







0 1 0n×1

1 0 0n×1

01×n 01×n 0n×n






,

P =
1

2







i −i 0n×1

1 0 0n×1

01×n 01×n 0n×n






,

K =
1

2







i i 0n×1

1 0 0n×1

01×n 01×n 0n×n






,

Rj
i = Ei+2,j+2 − δi

j

1

n
ΣEi+2i+2,

Qi =
1√
2
(E1,i+2 + E2,i+2), S̄i =

1√
2
(E1,i+2 − E2,i+2),

Q̄i =
i√
2
(Ei+2,1 − Ei+2,2), Si = − i√

2
(Ei+2,1 + Ei+2,2), (A.1)

where i, j = 1, 2 . . . n, and

Ei,j =

{

1, at the ith line and jth row

0, otherwise.
(A.2)
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B κ-symmetry

In this section we would like to discuss the κ-symmetry of the sigma models on AdS2×S2m

(m = 1, 2, 3, 4) and AdS4 ×S2m, (m = 1, 2, 3) backgrounds. The coset spaces for these two

case are OSp(2m + 1|2)/(SO(2m) × U(1)) and OSp(2m + 1|4)/(SO(2m) × SO(3, 1)).

The algebra of osp(2m + 1|2n) can be realized by supermatrices of the form

A =

(

X θ

η Y

)

(B.1)

with the condition

Xt = −X, Y t = −C2nY C1
2n, η = −C2nθt,

where X and Y are even (2m + 1)× (2m + 1) and 2n× 2n matrices respectively, and θ and

η are the odd (2m + 1) × 2n matrix and 2n × (2m + 1) matrix respectively. The matrices

C2n for n = 1, 2 are

C2 =

(

0 1

−1 0

)

, C4 =











0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0











To get the SO(3, 1) (or SO(2, 1)) part of Sp(4) (or Sp(2)), an reality condition should

be imposed.

These algebras have inner automorphism Ω(A) = ΩAΩ−1, where

Ω =







I2m 0 0

0 −1 0

0 0 σ1







for n = 1 and

Ω =







I2m 0 0

0 −1 0

0 0 C4







for n = 2. The Z4-graded subspaces are defined by

Hk = {X ∈ osp(2m + 1|2n)|ΩXΩ−1 = ikX}.

The cosets AdS2n × S2m can be parameterized by the generators belonging to H2.

Thus a Lie algebra element parameterizing these cosets can be presented in the form

A =

(

yiTi 0

0 xµT µ

)

where Ti = Ei,2m+1 − E2m+1,i, i = 1, 2, . . . , 2m,

T 0 =

(

1 0

0 −1

)

, T 1 =

(

0 1

−1 0

)
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for n = 1 and

T 0 =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











, T 1 =











0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0











T 2 =











0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0











, T 1 =











0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0











for n = 2.

As proved in [15], the κ-symmetry of the coset models can be understood as the local

fermionic symmetry with transformation parameters ε(1) and ε(3). ε(1) takes the form

ε(1) = A
(2)
α,−A

(2)
β,−καβ

++ + A
(2)
α,−καβ

++A
(2)
β,− + καβ

++A
(2)
α,−A

(2)
β,− − 1

2n
str(ΣA

(2)
α,−A

(2)
β,−)καβ

++, (B.2)

where α, β are the world sheet indices, A
(2)
α is the current restrict to H2, καβ ∈ H1 is

the κ-symmetry parameter which is assumed to be independent on the dynamical fields of

these models. The subscript ± in the above relation denotes the components are defined

with respect to the projections defined by V α
± = 1

2(γαβ ± ǫαβ)Vβ with γαβ being the Weyl-

invariant world-sheet metric. ε(3) takes a similar form. It is essential that the action remains

invariant under these transformations without using the equations of motion. Thus the κ-

symmetry degrees of freedom depend on the rank of ε.

Without loss of generality we can assume that the transversal fluctuations are all

suppressed and the corresponding element A(2) has the form

A(2) =

(

yT0 0

0 ixT 0

)

where T 0 corresponds to time direction in the AdS Space and any element from the tangent

space to S2m can be brought to T0 by SO(2m) transformation. Notice that the Virasoro

constraint str(A
(2)
α,−A

(2)
β,−) = 0 demands x2 = y2 for n = 1 and 2x2 = y2 for n = 2. Plugging

this together with a generic parameter κ into eq. (B.2), we find that the ε depends on only

2 (for n = 1) or 4 (for n = 2) independent complex fermionic parameters. The reality

condition reduces this number by half. Thus, the κ-symmetry transformation depends on

2 or 4 real fermions. Consequently the same number of fermionic degrees of freedom can

be gauged away.

We have used the above method to discuss the κ-symmetry of the supercosets of SU

supergroups and recovered the well-known result in thess cases successfully.
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[12] M. Lüscher and K. Pohlmeyer, Scattering of massless lumps and nonlocal charges in the

two-dimensional classical nonlinear σ-model, Nucl. Phys. B 137 (1978) 46 [SPIRES].

[13] T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models,

Phys. Lett. B 201 (1988) 466 [SPIRES].

[14] N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on

AdS2 × S2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200]

[SPIRES].

[15] G. Arutyunov and S. Frolov, Superstrings on AdS4 × CP 3 as a coset σ-model,

JHEP 09 (2008) 129 [arXiv:0806.4940] [SPIRES].

[16] B. Stefanski, jr, Green-Schwarz action for Type IIA strings on AdS4 × CP 3,

Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [SPIRES].

[17] J. Gomis, D. Sorokin and L. Wulff, The complete AdS4 × CP 3 superspace for the type IIA

superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [SPIRES].

[18] P.A. Grassi, D. Sorokin and L. Wulff, Simplifying superstring and D-brane actions in

AdS4 × CP 3 superbackground, JHEP 08 (2009) 060 [arXiv:0903.5407] [SPIRES].

– 17 –

http://dx.doi.org/10.1088/1126-6708/2007/01/064
http://arxiv.org/abs/hep-th/0607160
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0607160
http://dx.doi.org/10.1016/j.nuclphysb.2007.11.041
http://arxiv.org/abs/0707.0243
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0707.0243
http://dx.doi.org/10.1088/1126-6708/2008/09/062
http://arxiv.org/abs/0807.3196
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.3196
http://dx.doi.org/10.1088/1126-6708/2007/12/082
http://arxiv.org/abs/0711.0707
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.0707
http://dx.doi.org/10.1103/PhysRevD.78.126004
http://arxiv.org/abs/0807.3228
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.3228
http://dx.doi.org/10.1088/1126-6708/2009/04/120
http://arxiv.org/abs/0902.3805
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.3805
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://arxiv.org/abs/hep-th/0305116
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0305116
http://dx.doi.org/10.1103/PhysRevD.71.086007
http://arxiv.org/abs/hep-th/0503089
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0503089
http://dx.doi.org/10.1142/S0217732304015129
http://arxiv.org/abs/hep-th/0405106
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405106
http://dx.doi.org/10.1142/S0217751X04020865
http://arxiv.org/abs/hep-th/0409133
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0409133
http://dx.doi.org/10.1016/0550-3213(78)90049-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B137,46
http://dx.doi.org/10.1016/0370-2693(88)90602-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B201,466
http://dx.doi.org/10.1016/S0550-3213(99)00683-5
http://arxiv.org/abs/hep-th/9907200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9907200
http://dx.doi.org/10.1088/1126-6708/2008/09/129
http://arxiv.org/abs/0806.4940
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.4940
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.015
http://arxiv.org/abs/0806.4948
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.4948
http://dx.doi.org/10.1088/1126-6708/2009/03/015
http://arxiv.org/abs/0811.1566
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.1566
http://dx.doi.org/10.1088/1126-6708/2009/08/060
http://arxiv.org/abs/0903.5407
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.5407

	Introduction
	AdS(5) x S**1 background
	AdS(2) background
	PSU supergroup case
	The OSp case
	The OSp(3|2) case
	The OSp(6|2) case


	Conclusion and discussion
	The definition of the su(1,1|n) generators 
	k-symmetry

